Statistical Business Analyst Using SAS 9

SAS Certified Professional Exam Guide

中文版本 | ← Back to Home

1 Exam Overview

The SAS Certified Statistical Business Analyst Using SAS 9 certification validates your ability to manipulate and analyze data using SAS procedures and the SAS Enterprise Guide interface.

Exam Code: A00-240

Duration: 2 hours

Questions: 60-65 multiple choice questions

Passing Score: 68%

Prerequisites: None (SAS programming experience recommended)

2 Exam Content Areas

2.1 1. Access and Manipulate Data (30%)

2.1.1 Import and Export Data

  • Import various data formats
  • Export data to different formats
  • Use PROC IMPORT and PROC EXPORT
/* Example: Importing Excel data */
PROC IMPORT DATAFILE="/path/to/sales.xlsx"
    OUT=work.sales
    DBMS=XLSX
    REPLACE;
    SHEET="Q1_Sales";
    GETNAMES=YES;
RUN;

2.1.2 Manipulate Data

  • Create new variables
  • Subset and filter data
  • Sort and organize data
/* Example: Data manipulation */
DATA work.analyzed;
    SET work.sales;
    
    /* Create calculated fields */
    profit = revenue - cost;
    profit_margin = (profit / revenue) * 100;
    
    /* Categorize data */
    IF profit_margin >= 20 THEN category = 'High';
    ELSE IF profit_margin >= 10 THEN category = 'Medium';
    ELSE category = 'Low';
    
    FORMAT profit_margin PERCENT8.2;
RUN;

2.2 2. Prepare Data for Analysis (25%)

2.2.1 Investigate and Summarize Data

  • Examine data distributions
  • Identify outliers and missing values
  • Calculate descriptive statistics
/* Example: Data investigation */
PROC MEANS DATA=work.sales N MEAN STD MIN MAX MEDIAN;
    VAR revenue cost profit;
    CLASS region;
RUN;

PROC UNIVARIATE DATA=work.sales;
    VAR profit_margin;
    HISTOGRAM profit_margin;
    PROBPLOT profit_margin;
RUN;

2.2.2 Clean and Prepare Data

  • Handle missing values
  • Identify and treat outliers
  • Transform variables
/* Example: Data cleaning */
DATA work.cleaned;
    SET work.sales;
    
    /* Handle missing values */
    IF MISSING(revenue) THEN DELETE;
    
    /* Replace missing with mean */
    IF MISSING(cost) THEN cost = 5000;
    
    /* Identify outliers */
    IF profit < -10000 OR profit > 100000 THEN outlier_flag = 1;
    ELSE outlier_flag = 0;
RUN;

2.3 3. Analyze Data (45%)

2.3.1 Generate Frequency Tables

  • Create one-way and two-way frequency tables
  • Calculate percentages and cumulative frequencies
  • Perform chi-square tests
/* Example: Frequency analysis */
PROC FREQ DATA=work.sales;
    TABLES region product / NOCUM NOPERCENT;
    TABLES region*product / CHISQ;
RUN;

2.3.2 Generate Summary Statistics

  • Calculate measures of central tendency and dispersion
  • Create grouped summaries
  • Generate custom statistics
/* Example: Summary statistics */
PROC MEANS DATA=work.sales MEAN STD MIN MAX SUM;
    VAR revenue profit;
    CLASS region product;
    OUTPUT OUT=work.summary
           MEAN=avg_revenue avg_profit
           SUM=total_revenue total_profit;
RUN;

2.3.3 Correlation Analysis

  • Calculate correlation coefficients
  • Create correlation matrices
  • Interpret correlation results
/* Example: Correlation analysis */
PROC CORR DATA=work.sales PLOTS=MATRIX;
    VAR revenue cost profit marketing_spend;
RUN;

PROC CORR DATA=work.sales NOSIMPLE;
    VAR profit;
    WITH revenue marketing_spend;
RUN;

2.3.4 Simple Linear Regression

  • Fit simple linear regression models
  • Interpret regression output
  • Assess model fit
/* Example: Linear regression */
PROC REG DATA=work.sales;
    MODEL profit = revenue / CLB;
    PLOT profit*revenue;
RUN;
QUIT;

/* Using PROC GLM */
PROC GLM DATA=work.sales PLOTS=ALL;
    MODEL profit = revenue;
    OUTPUT OUT=work.predictions PREDICTED=pred_profit RESIDUAL=resid;
RUN;
QUIT;

2.3.5 ANOVA (Analysis of Variance)

  • One-way ANOVA
  • Two-way ANOVA
  • Multiple comparisons
/* Example: One-way ANOVA */
PROC ANOVA DATA=work.sales;
    CLASS region;
    MODEL profit = region;
    MEANS region / TUKEY;
RUN;
QUIT;

/* Example: Two-way ANOVA */
PROC GLM DATA=work.sales;
    CLASS region product;
    MODEL profit = region product region*product;
    LSMEANS region product / ADJUST=TUKEY;
RUN;
QUIT;

2.3.6 Multiple Regression

  • Fit multiple regression models
  • Select variables
  • Validate assumptions
/* Example: Multiple regression */
PROC REG DATA=work.sales;
    MODEL profit = revenue marketing_spend employees / 
          VIF 
          SELECTION=STEPWISE 
          SLS=0.05 
          SLE=0.10;
    PLOT RESIDUAL.*PREDICTED.;
RUN;
QUIT;

2.3.7 Logistic Regression

  • Binary logistic regression
  • Interpret odds ratios
  • Assess model performance
/* Example: Logistic regression */
PROC LOGISTIC DATA=work.customers PLOTS=ALL;
    MODEL purchased(EVENT='1') = age income previous_purchases / 
          LACKFIT 
          CTABLE 
          RSQUARE;
    UNITS age = 10 income = 1000;
    OUTPUT OUT=work.scored PRED=predicted_prob;
RUN;

2.3.8 Time Series Analysis

  • Plot time series data
  • Calculate trends
  • Apply forecasting methods
/* Example: Time series analysis */
PROC TIMESERIES DATA=work.monthly_sales 
                PLOT=SERIES
                OUT=work.ts_output;
    ID date INTERVAL=MONTH;
    VAR sales;
RUN;

PROC FORECAST DATA=work.monthly_sales 
              METHOD=STEPAR
              LEAD=12
              OUT=work.forecasted;
    ID date INTERVAL=MONTH;
    VAR sales;
RUN;

3 SAS Enterprise Guide

3.1 Interface Overview

SAS Enterprise Guide provides a point-and-click interface for:

  • Data access and manipulation
  • Statistical analysis
  • Report generation
  • Task automation

3.2 Common Tasks

3.2.1 Data Import Task

  1. File → Import Data
  2. Select data source
  3. Configure import options
  4. Review and run

3.2.2 Query Builder

  • Visual interface for data manipulation
  • Drag-and-drop column selection
  • Filter and sort data
  • Join tables

3.2.3 Statistical Tasks

Access via: Tasks → Statistics

  • Summary Statistics
  • Distribution Analysis
  • Correlation Analysis
  • Regression
  • ANOVA

3.3 Project Organization

  • Organize tasks in process flow
  • Add notes and documentation
  • Save projects for reuse
  • Share projects with team

4 Study Resources

4.1 Official SAS Resources

  1. Statistics 1: Introduction to ANOVA, Regression, and Logistic Regression
  2. Predictive Modeling Using Logistic Regression
  3. SAS Enterprise Guide 1: Querying and Reporting

4.2 Practice Tips

  1. Understand Statistical Concepts
    • Know when to use each analysis method
    • Understand assumptions and limitations
    • Interpret statistical output correctly
  2. Practice with SAS Enterprise Guide
    • Familiarize yourself with the interface
    • Practice creating process flows
    • Learn keyboard shortcuts
  3. Focus on Interpretation
    • Understanding output is crucial
    • Practice explaining results
    • Know practical significance vs. statistical significance
  4. Real Data Practice
    • Work with diverse datasets
    • Handle messy, real-world data
    • Practice complete analysis workflows

5 Common Analysis Scenarios

5.1 Scenario 1: Customer Segmentation

/* Analyze customer purchase patterns */
PROC FREQ DATA=work.customers;
    TABLES age_group*purchase_category / CHISQ;
RUN;

PROC MEANS DATA=work.customers;
    CLASS age_group;
    VAR total_purchases average_order_value;
RUN;

5.2 Scenario 2: Sales Prediction

/* Predict sales based on marketing spend */
PROC REG DATA=work.campaigns;
    MODEL sales = marketing_spend advertising_reach / CLM;
    PLOT sales*marketing_spend;
RUN;
QUIT;

5.3 Scenario 3: A/B Testing

/* Compare two marketing campaigns */
PROC TTEST DATA=work.campaigns;
    CLASS campaign_version;
    VAR conversion_rate;
RUN;

6 Common Pitfalls

  1. Ignoring assumptions - Always check regression/ANOVA assumptions
  2. Misinterpreting p-values - Understand what they really mean
  3. Over-relying on automation - Understand what tasks are doing
  4. Not checking data quality - Always investigate data before analysis

7 Sample Questions

7.1 Question 1

What test should you use to determine if there’s a relationship between two categorical variables?

Answer: Chi-square test of independence (using PROC FREQ with CHISQ option)

7.2 Question 2

In linear regression output, what does R-square represent?

Answer: The proportion of variance in the dependent variable explained by the independent variable(s). Values range from 0 to 1, with higher values indicating better model fit.

8 Next Steps

After certification:

  1. Apply statistical analysis in business contexts
  2. Learn advanced analytics (machine learning, data mining)
  3. Consider SAS Visual Analytics certification
  4. Develop domain-specific expertise

← Back to Home